If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-40y-528=0
a = 7; b = -40; c = -528;
Δ = b2-4ac
Δ = -402-4·7·(-528)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-128}{2*7}=\frac{-88}{14} =-6+2/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+128}{2*7}=\frac{168}{14} =12 $
| 41=34+y | | -m/2=7 | | v-27=8 | | 2/5+1/4x-1/3=3/4x | | -2-(5/4x)=13 | | 1/2x^2+3x-3=0 | | -4+(2/5x)+10=19 | | 5.2b=26 | | -7=x-4=9 | | −4x=36−4x=36 | | 4(4y+2)=2(1+6)+8 | | −4x=36−4x=36. | | 2X+3+x+×-3=36 | | (X+1)^3=(x-1)*3+26 | | 0.5(2x+7)=3x-4 | | 3x+3/4=1 | | 2/a=34/17 | | 7n^2+2n-24=0 | | 133y+16=22 | | 1.6r=5.8 | | -10w+9w=12 | | X^2-19x+1=0 | | .5^x=2.154 | | -2p+128=p | | s/7-1=1/14 | | b/9-34-36=b | | 51=-w/5 | | (x-2)/2x+1=(x+1)/x | | √(8−4w)=13+w | | a^2+27a-58=0 | | x+25/8=5 | | z/4+2238=z |